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Correspondence as an Attentive Walk

Modelling Neighbor Relation in Space-Time Graph

Main IdeaSummary

• How to find the correspondence of a small object such
as the dog tail in a video?

• We identify that both longer views (temporal dynamics)
and broader views (neighbor relations) are crucial to
distinguish similar instances.

• We capture these two cues in a joint graph to learn
correspondence, such that the model can see longer
and broader when performing query-target matching.

• Learning representations for space-time correspondence is a fundamental task to describe the
dynamics of natural scenes from large-scale unlabeled videos.

• Three contributions:
• A joint graph that models neighbor relations in space and similarity relations in time.
• Formulate contrastive learning as an attentive walk on the graph with node dropout and
cycle-consistency constraints.

• State-of-the-art results on three visual tasks, i.e., object, part propagation and pose tracking.

• Neighbor Relation Graph: it connects the central node with local neighbors, with edges initialized
with topological prior and learned to determine the aggregation strength from neighbors.

• Similarity Graph: it links inter-frame nodes with pair-wise similarity affinities, to form multi-step
association on a long-range sequence.

• A palindrome graph for training with node dropout to filter out “common-fate” nodes.
• An optimal correspondence is the path that can walk back to its initial position.
• A chain of contrastive learning problem with extra positive pairs, such as center-neighbor pairs
and neighbor-neighbor pairs, which encourage the model to learn general neighbor relations.

Neighborhood size & Edge value

Node dropout Path length

• 9 neighboring nodes peak the performance.
Larger neighborhood size induces noise.

• Encoding topological prior in edges is essential
for modelling neighbor relation of nodes.

• Moderate node dropout (0.1-0.3) boost the
performance on DAVIS benchmark.

• Longer path length improves results as model
can see longer views of instances for
contrastive learning.
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