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Introduction
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Ø Computer assisted interventions (CAI) is essential for modern operating rooms (OR) to 
promote surgical therapy and structure repair. 

Ø Its typical applications include context-aware systems, robot-assisted surgeries, 
surgeon training, etc.
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Problem definition
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Future frame prediction
Given a video clip [𝐱!, 𝐱", … , 𝐱#!] with each frame 𝐱# ∈ ℝ$×&×', we aim to generate the 

following frames (𝐱#!(!, (𝐱#!(", … , (𝐱) in the pixel space.

Unique characteristics of surgical videos
• Long time duration without clear boundaries among different phases
• Meaningful movements depending on goals
• Complicated dual-arm interactions with limited inter-class variance

…



Motivation

• Providing image-guided navigation rather than semantic descriptions
• Enabling reasoning of decision-making to promote surgical gesture recognition
• A higher-level interpretation of surgeries for realizing surgical automation
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Despinoy et al. 2015 Gao et al. 2020

Despinoy F, et al. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Transactions on Biomedical Engineering, 2015.
Gao et al. Automatic gesture recognition in robot-assisted surgery with reinforcement learning and tree search. ICRA, 2020.
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Related work

Deterministic methods modeling only one outcome
[Oh et al. NurIPS 2015; Finn et al. NurIPS 2016; Villegas et al. ICLR 2017; Villegas et al. ICML 2017; Denton et 
al. NurIPS 2017; Jin et al. CVPR 2020]

Stochastic methods without considering dual-arm cases
[Babaeizadeh et al. ICLR 2018; Denton et al. ICML 2018; Tulyakov et al. CVPR 2018; Kumar et al. ICLR 2020]

Villegas et al. 2017 Denton et al. 2018

𝑝!(𝐱"|𝐳#:", 𝐱#:"%#) → )𝐱"

𝐳"~𝒩(𝜇, 𝜎&)
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Proposed method
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Ternary Prior Guided Variational Autoencoder (TPG-VAE)
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Decomposed video encoding network
• VGG net and LSTM are combined to exact spatio-temporal features from videos.
• The posterior distributions from content and motion are modeled as Gaussian distribution.

Content distribution 𝐂#:

Motion distribution 𝐌#:
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Proposed method

Decomposed video encoding network
The prior distributions of 𝐂# and 𝐌# are modelled by two LSTMs to enable latent code 
generation when no more future information is available during testing.
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Proposed method

Ternary latent variable
• The class label information 𝐿# ∈ {0,1}*" is made as the non-learned part of 𝐳#.
• By referring to 𝐳#, the next frame could be generated using an LSTM and a decoder.
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Proposed method
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Learning process
The model is trained by maximizing the following variational lower bound:
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Proposed method
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Inference style
• The expectations of the prior distribution without sampling are used to produce the 

most likely prediction.
• Choosing the best generation after sampling several times is not practical for online 

prediction scenarios. 
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Experiments

Datasets 
• The suturing task of the JIGSAWS dataset using da Vinci surgical system
• Video frames resized to 64×64
• Positioning needle (G2), pushing needle through tissue (G3), transferring needle 

from left to right (G4), and pulling suture with left hand (G6)
• Training set (470 sequences), testing set (142 sequences)

Evaluation metrics 
• VGG Cosine Similarity
• Peak Signal-to-Noise Ratio (PSNR)
• structural similarity (SSIM) 

da Vinci surgical system
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Experiments
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Qualitative evaluation 

Qualitative results showing the gesture of G2 among different models. 
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Experiments

[1] Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: ICLR (2017)
[2] Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: ICML (2018)

Quantitative evaluation 
Quantitative evaluation on the average of the different metrics. 
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Discussions
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Dual Arm Cases 

Qualitative comparison indicating the gesture of G4. 



Following work
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Key points

Decomposing surgical videos via interpretable key Points 
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Conclusions

ØA novel TPG-VAE model to predict future scene in dual arm surgical robots.
Ø Inherent prior information is used as guidance to generate future scenes. 
Ø SOTA results on the suturing task of the public JIGSAWS dataset.

Broader effect



Thank you!
Q & A
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